Source code for pennylane.templates.subroutines.qubitization
# Copyright 2018-2024 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This submodule contains the template for Qubitization.
"""
import copy
from pennylane.operation import Operation
from pennylane.ops import I, prod
from pennylane.wires import Wires
from .prepselprep import PrepSelPrep
from .reflection import Reflection
[docs]
class Qubitization(Operation):
r"""Applies the `Qubitization <https://arxiv.org/abs/2204.11890>`__ operator.
This operator encodes a Hamiltonian, written as a linear combination of unitaries, into a unitary operator.
It is implemented with a quantum walk operator that takes a Hamiltonian as input and generates:
.. math::
Q = \text{Prep}_{\mathcal{H}}^{\dagger} \text{Sel}_{\mathcal{H}} \text{Prep}_{\mathcal{H}}(2|0\rangle\langle 0| - I).
.. seealso:: :class:`~.AmplitudeEmbedding` and :class:`~.Select`.
Args:
hamiltonian (Union[.Hamiltonian, .Sum, .Prod, .SProd, .LinearCombination]): The Hamiltonian written as a linear combination of unitaries.
control (Iterable[Any], Wires): The control qubits for the Qubitization operator.
**Example**
This operator, when applied in conjunction with QPE, allows computing the eigenvalue of an eigenvector of the Hamiltonian.
.. code-block::
H = qml.dot([0.1, 0.3, -0.3], [qml.Z(0), qml.Z(1), qml.Z(0) @ qml.Z(2)])
@qml.qnode(qml.device("default.qubit"))
def circuit():
# initiate the eigenvector
qml.PauliX(2)
# apply QPE
measurements = qml.iterative_qpe(
qml.Qubitization(H, control = [3,4]), aux_wire = 5, iters = 3
)
return qml.probs(op = measurements)
output = circuit()
# post-processing
lamb = sum([abs(c) for c in H.terms()[0]])
.. code-block:: pycon
>>> print("eigenvalue: ", lamb * np.cos(2 * np.pi * (np.argmax(output)) / 8))
eigenvalue: 0.7
"""
grad_method = None
@classmethod
def _primitive_bind_call(cls, *args, **kwargs):
return cls._primitive.bind(*args, **kwargs)
def __init__(self, hamiltonian, control, id=None):
wires = Wires(control) + hamiltonian.wires
self._hyperparameters = {
"hamiltonian": hamiltonian,
"control": Wires(control),
}
super().__init__(*hamiltonian.data, wires=wires, id=id)
def _flatten(self):
data = (self.hyperparameters["hamiltonian"],)
metadata = tuple(item for item in self.hyperparameters.items() if item[0] != "hamiltonian")
return data, metadata
@classmethod
def _unflatten(cls, data, metadata):
return cls(*data, **dict(metadata))
def __copy__(self):
clone = Qubitization.__new__(Qubitization)
# Ensure the operators in the hyper-parameters are copied instead of aliased.
clone._hyperparameters = {
"hamiltonian": copy.copy(self._hyperparameters["hamiltonian"]),
"control": copy.copy(self._hyperparameters["control"]),
}
for attr, value in vars(self).items():
if attr != "_hyperparameters":
setattr(clone, attr, value)
return clone
[docs]
def map_wires(self, wire_map: dict):
# pylint: disable=protected-access
new_op = copy.deepcopy(self)
new_op._wires = Wires([wire_map.get(w, w) for w in self.wires])
new_op._hyperparameters["hamiltonian"] = new_op._hyperparameters["hamiltonian"].map_wires(
wire_map
)
new_op._hyperparameters["control"] = Wires(
[wire_map.get(w, w) for w in self._hyperparameters["control"]]
)
return new_op
[docs]
@staticmethod
def compute_decomposition(*_, **kwargs):
r"""Representation of the operator as a product of other operators (static method).
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.Qubitization.decomposition`.
Args:
*params (list): trainable parameters of the operator, as stored in the ``parameters`` attribute
wires (Iterable[Any], Wires): wires that the operator acts on
**hyperparams (dict): non-trainable hyperparameters of the operator, as stored in the ``hyperparameters`` attribute
Returns:
list[Operator]: decomposition of the operator
**Example:**
.. code-block:: python
import pennylane as qml
from pennylane.wires import Wires
>>> print(qml.Qubitization.compute_decomposition(hamiltonian=0.1 * qml.Z(0), control=Wires(1)))
[Reflection(3.141592653589793, wires=[1]), PrepSelPrep(coeffs=(0.1,), ops=(Z(0),), control=Wires([1]))]
"""
hamiltonian = kwargs["hamiltonian"]
control = kwargs["control"]
decomp_ops = []
identity = prod(*[I(wire) for wire in control])
decomp_ops.append(Reflection(identity))
decomp_ops.append(PrepSelPrep(hamiltonian, control=control))
return decomp_ops
_modules/pennylane/templates/subroutines/qubitization
Download Python script
Download Notebook
View on GitHub